

Automated Machine Learning Summer Semester 2021 Final Project

Carlos Marañes

UNI FREIBURG Problem statement: maximize a <u>network accuracy</u> with the following constraints:

- <u>Network size</u> (upper bound) •
- <u>Precision</u> (lower bound) ullet

These constraints are needed, e.g., in domains with **hardware** restrictions or medical applications, where precision is crucial

UNI FREIBURG Problem statement: maximize a <u>network accuracy</u> with the following constraints:

- <u>Network size</u> (upper bound) •
- <u>Precision</u> (lower bound) lacksquare

These constraints are needed, e.g., in domains with hardware restrictions or medical applications, where precision is crucial

In this case, we are going to optimize a flower classifier

https://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html

Approach

UNI FREIBURG Task is solved as a **NAS problem**. Needed of define:

- 1. Search Space
- 2. Search Strategy
- 3. Performance Estimation Strategy

Approach

UNI FREIBURG Task is solved as a **NAS problem**:

- 1. Search Space
- 2. Search Strategy
- 3. Performance Estimation Strategy


```
Carlos Marañes - AutoML Project (SS 2021)
```

FREIBURG

Approach - Search Space

Hyperparameter	Values	Log Scale	
Learning rate	[0.00001, 0.1]	True	
Batch size	[4, 300]	True	
Kernel size	{3, 5, 7}	False	
Batch Norm	{True, False}	False	
Global average pooling	{True, False}	False	
Dropout rate	[0.01, 0.5]	True	
Number of convolutional layers	{1, 2, 3}	False	
Number of channels of convolutional layers	[16, 1024]	True	
Number of fully connected layers	{1, 2, 3}	False	
Number of channels of fully convolutional layers	[4, 512]	False	

Approach

UNI FREIBURG Task is solved as a **NAS problem**:

- 1. Search Space
- 2. Search Strategy
- 3. Performance Estimation Strategy


```
Carlos Marañes - AutoML Project (SS 2021)
```

Approach

UNI FREIBURG Task is solved as a **NAS problem**:

- 1. Search Space
- 2. Search Strategy
- 3. Performance Estimation Strategy

Evolutionary Algorithms

- Simple and powerful [Awad et al. 2021]
- Some changes to make it work with constraints

- UNI FREIBURG <u>Idea</u>: Prioritize a population that satisfy the constraints and 1 then improve accuracy
 - Models that do not satisfy the maximum number of parameters 2. will be discarded
 - A-priori sorting. First precision and then accuracy

- UNI FREIBURG <u>Idea</u>: Prioritize a population that satisfy the constraints and 1 then improve accuracy
 - Models that do not satisfy the maximum number of parameters 2. will be discarded
 - **A-priori sorting.** First precision and then accuracy

Individual [Accuracy, Precision]

(min precision: 0.39)

- UNI FREIBURG Idea: Prioritize a population that satisfy the constraints and 1 then improve accuracy
 - Models that do not satisfy the maximum number of parameters 2. will be discarded.
 - **A-priori sorting.** First precision and then accuracy

Approach

UNI FREIBURG Task is solved as a **NAS problem**:

- 1. Search Space
- 2. Search Strategy
- 3. Performance Estimation Strategy

Approach

UNI FREIBURG Task is solved as a **NAS problem**:

- 1. Search Space
- 2. Search Strategy
- 3. Performance Estimation Strategy

With the current approach we are fully evaluating individuals that may not satisfy the precision constraint...

```
Carlos Marañes - AutoML Project (SS 2021)
```


With the current approach we are fully evaluating individuals that may not satisfy the precision constraint...

Idea: Do not fully train the lowest promising ones!

```
Carlos Marañes - AutoML Project (SS 2021)
```

Approach - Performance Estimation Strategy

UNI FREIBURG Hyperband runs multiple copies of Successive Halving in parallel

Due to hardware limitations, it has been run in series

Training setup

- UNI FREIBURG The algorithm has been run for 24 hours
 - It has been run on the Pool Computers: •
 - Intel(R) Core™ i7-3770 CPU @ 3.40GHz
 - Nvidia GeForce GTX 1060 3GB
 - Weights & Biases integration •
 - Real-time monitoring of the optimizer

Best Accuracy

Best Precision

- Maximum number of parameters: 2e7
- Minimum precision: 0.39
- Tested random seeds: 0, 42, 123
- Random Search does not evaluate configurations with an invalid number of parameters

Best Accuracy

Best Precision

- All of them return a valid configuration
- Random Search returns the worst accuracy
- EA-Hyperband evaluates 44.46 (±17)% valid configurations
- EA evaluates 45.86 (±20)% valid configurations
- Random Search evaluates 0.7 (±0.4)% valid configurations

Results

Population average accuracy

Population average precision

- Fitness of the population improves over time
- EA population has a better accuracy
- EA-Hyperband population has a better precision

Results - Evaluation Training and evaluation with test set:

	Precision	Top3-Accuracy	
EA-Hyperband	0.552	0.891	
EA	0.555	0.891	
Random Search	0.569	0.876	
Default	0.318	0.755	

UNI FREIBURG Training and evaluation with test set:

	Precision	Top3-Accuracy	
EA-Hyperband	0.552	0.891	
EA	0.555	0.891	
Random Search	0.569	0.876	
Default	0.318	0.755	

McNemar Test ($\alpha = 0.05$):

- EA-Hyperband vs. Default (73.78>3.84): EA-HB has a better performance than default
- EA-Hyperband vs. Random (6.56>3.84): EA has a better performance than random
- EA-Hyperband vs. EA (0.1<3.84): Cannot say anything about the performance

UNI FREIBURG The algorithm has been tested with different constraint values

Seed	Minimum Precision	Test Precision	Maximum Number of Parameters	Configuration Parameters	Test Accuracy
123	0.39	0.573	5e7	12322877	0.906
123	0.39	0.575	1e8	12322877	0.915
123	0.40	0.556	2e7	2251076	0.924
123	0.42	0.566	2e7	1897658	0.921
123	0.39	0.568	4e6	2021579	0.891
123	0.39	0.492	2e6	871034	0.900

All of them return a valid configuration

- UNI FREIBURG Evolutionary Algorithms are powerful enough to solve a NAS • problem
 - The idea is that the population satisfy the constraints to then optimize the accuracy
 - Hyperband is applied to avoid wasting resources •
 - Experiments show that the proposed algorithm outperforms • Random Search and the default network
 - Pipeline allows reproducibility of the results ۲

References

- [AutoML Course] https://learn.ki-campus.org/courses/automl-luh2021/
 - [Elsken et al. 2019] Neural architecture search: A survey
 - [Awad et al. 2021] DEHB: Evolutionary Hyberband for Scalable, Robust and Efficient Hyperparameter Optimization
 - GitHub Repository:
 <u>https://github.com/automl-classroom/automl-ss21-final-project-</u>
 <u>cmaranes</u>

Automated Machine Learning Summer Semester 2021 Final Project

Carlos Marañes

Backup Slides

Results - Reproducibility

- The project satisfy best practices for releasing code and when comparing NAS methods:
 - 1. Reported hyperparameters for the final evaluation pipeline
 - 2. Reported random seeds. Same input, same output (even with DropOut!)
 - 3. Fair comparisons. Same seeds, same dataset, same hardware, same time, comparison with random search, etc.
 - 4. <u>GitHub Repository</u> with detailed README

0 E README.md results of the optimizer. target.py Target function. Is a handle of the CNN. utils.pv Contains helpers for the different scripts. How to evaluate the optimal found solution Once the optimizer has been run, it will output a file with the optimal configuration, which has the name of opt_cfg_{moreInfo}, where moreInfo indicates some information about the hyperparameters of how the algorithm has been run. This more info includes the random seed which can be passed as a parameter in --seed to obtain comparable results. This file should be passed as the --configuration parameter to main.py to be evaluated In this case, the best configuration obtained for the EA-Hyperband would be run with the following command: \$ python main.py -c runs/opt_cfg popSize 50 numChildren 10 hyperband True minPrecision 0.39 seed 123 date 2021 09 02-04:36 :25_PM.json -t True

50 random selected individuals

Tournament parent selection

Mutation or recombination with a random probability of 0.5

$(\mu + \lambda)$ -selection

It selects from the 50+10 generated children the 50 best

Approach - Hyperband Configuration

Approach - Hyper Hyperband Configuration:

- 5 Successive Halving runs
- The number of children is selected according to the budget of the corresponding Successive Halving
- Only fully trained offsprings are added to the population
- Hyperband warranties that at least is as bad as the Random Search
- A total of 10 new fully trained children are included into the population

Default Configuration

UNI FREIBURG architecture default = { 'n conv layers': 3, 'n channels conv 0': 457, 'n_channels_conv_1': 511, 'n channels conv 2': 38, 'kernel size': 5, 'global avg pooling': True, 'use BN': False, 'n fc layers': 2, 'n channels fc 0': 27, 'n channels fc 1': 17, 'n channels fc 2': 273, 'dropout rate': 0.2} Batch Size: 290 Leraning Rate: 0.0016

Results - Precision Constraint

Population average accuracy

UNI FREIBURG

Population average precision

- Tested the algorithm with minimum precisions of 0.39, 0.40 and 0.42
- All of them return a valid configuration

UNI FREIBURG

EA - Hyperband (Seed 123)

UNI FREIBURG

EA (Seed 123)

UNI FREIBURG

Random Search (Seed 123)

Additional Results - Seed 123

EA-HB - Prec: 0.40

UNI FREIBURG

EA-HB - Params: 2e6

Carlos Marañes - AutoML Project (SS 2021)

EA-HB - Prec: 0.42

EA-HB - Params: 4e6

Approach - Search Strategy Lots of different ways of defining the search strategy stage arise thanks to the AutoML community. We can find:

- 1. Purely NAS Approaches
 - a. Need of fully redefine the given code.
- 2. (HPO) Bayesian Optimization Strategies
 - a. Surrogate Model: Random Forests allow the use of conditional and categorical search spaces.
 - i. Poor uncertainty estimates.
 - Needs a significant amount of data to train the П. model
- 3. (HPO) Evolutionary Algorithms
 - Simple and Powerful [Awad et al. 2021] а.
 - b. <u>Idea</u>: Achieve a population that satisfies the constraints and then improve accuracy

- 1. <u>Maximum number of parameters</u>
 - a. Cheap to evaluate
 - b. Discard all the individuals which do not meet this constraint
- 2. Minimum precision
 - a. Expensive to evaluate
 - Needed of evaluating to know if a certain individual meets b. this constraint

All members of the population satisfy the maximum number of parameters but not minimum precision

Some problems I have faced

- UNI FREIBURG Some configurations of the search space could not be evaluated in the pool computers
 - Disk Quota has been a problem when stopping and resuming ٠ training in Hyperband
 - Some ConfigSpace functions did not return what expected ۲